DETEKSI PENYAKIT DAUN TANAMAN STROBERI MENGGUNAKAN YOLOV8 PENDEKATAN BERBASIS DEEP LEARNING DI TAWANGMANGU
Keywords:
yolov8, penyakit daun stroberi, hawar daun, bercak daun, tipburn, deep learning, tawangmangu, deteksi realtime, strobikaAbstract
Deteksi dini penyakit pada daun stroberi merupakan langkah strategis dalam upaya peningkatan produktivitas pertanian, khususnya di kawasan dataran tinggi seperti Tawangmangu. Penelitian ini bertujuan untuk mengembangkan dan mengevaluasi performa model YOLOv8 untuk mendeteksi lima kelas utama kondisi daun stroberi secara real-time. Dataset lokal dikumpulkan langsung dari kebun stroberi di Tawangmangu dan dianotasi menggunakan format YOLO. Proses pelatihan mencakup augmentasi data dan pembagian dataset, kemudian dievaluasi menggunakan metrik akurasi, presisi, recall, F1-score, dan mean Average Precision (mAP). Pengujian model di Google Colab menunjukkan performa tinggi dengan nilai evaluasi mAP@0.5 sebesar 99.2% dan mAP@0.5:0.95 sebesar 94.5%. Pengujian lapangan menerapkan implementasi website STROBIKA menunjukkan akurasi rata-rata sebesar 84,6%, dan mampu mengidentifikasi tiga penyakit utama daun stroberi (Leaf Blight, Leaf Spot, dan Tipburn) secara cepat dan akurat. Meskipun terdapat tantangan dalam mengklasifikasikan daun sehat dan objek non-stroberi, sistem ini menunjukkan potensi tinggi untuk diterapkan dalam pertanian berbasis deep learning di dunia nyata.
References
I. M. D. Pranata, I. Darma, I. M. S. Sandhiyasa, Dan I. Wiguna, “Strawberry Disease Detection Based On Yolov8 And K-Fold Cross-Validation,” Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), Vol. 11, No. 3, 2023.
[2] A. M. Patel, W. S. Lee, Dan N. A. Peres, “Imaging And Deep Learning Based Approach To Leaf Wetness Detection In Strawberry,” Sensors, Vol. 22, No. 21, Hlm. 8558, 2022.
[3] S. Pertiwi, D. H. Wibowo, Dan S. Widodo, “Deep Learning Model For Identification Of Diseases On Strawberry (Fragaria Sp.) Plants.,” International Journal On Advanced Science, Engineering & Information Technology, Vol. 13, No. 4, 2023.
[4] B. P. S. K. Karanganyar, Kecamatan Tawangmangu Dalam Rangka Tawangmangu District In Figures 2024, Volume 38,. 2024. [Daring]. Tersedia Pada: Https://Karanganyarkab.Bps.Go.Id/Id/Publication/2024/09/26/F516155801c9e144ffc0ddb5/Kecamatan-Tawangmangu-Dalam-Angka-2024.Html
[5] A. V Efrilla, S. B. Sulistyo, K. Wijaya, P. H. Kuncoro, Dan A. Sudarmaji, “Klasifikasi Penyakit Pada Daun Stroberi Menggunakan K-Means Clustering Dan Jaringan Syaraf Tiruan,” Journal Of Tropical Agricultural Engineering And Biosystems-Jurnal Keteknikan Pertanian Tropis Dan Biosistem, Vol. 8, No. 2, Hlm. 161–170, 2020.
[6] J.-R. Xiao, P.-C. Chung, H.-Y. Wu, Q.-H. Phan, J.-L. A. Yeh, Dan M. T.-K. Hou, “Detection Of Strawberry Diseases Using A Convolutional Neural Network,” Plants, Vol. 10, No. 1, Hlm. 31, 2020.
[7] Siti Choiriyah Dan Aji Supriyanto, “Perbandingan Deep Learning Yolov5 Dan Yolov8 Untuk Deteksi Penyakit Daun Tanaman Tomat,” Jitsi : Jurnal Ilmiah Teknologi Sistem Informasi, Vol. 6, No. 1, Hlm. 56–65, Mar 2025, Doi: 10.62527/Jitsi.6.1.357.
[8] A. Fajaryanto Cobantoro, ; Fauzan Masykur, Dan ; Kelik Sussolaikah, “Performance Analysis Of Alexnet Convolutional Neural Network (Cnn) Architecture With Image Objects Of Rice Plant Leaves,” Jitk (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), Vol. 8, No. 2, Hlm. 117–122, Feb 2023, Doi: 10.33480/Jitk.V8i2.4060.
[9] V. V, C. R.K, Dan R. A.C, “Real Time Object Detection System With Yolo And Cnn Models: A Review,” Journal Of Xi An University Of Architecture & Technology Xiv(Vii), Vol. Xiv, No. 7, Hlm. 144–151, Jul 2022, Diakses: 20 Juli 2025. [Daring]. Tersedia Pada: Https://Www.Researchgate. Net/Publication/361929615_Real_Time_Object_Detection_System_With_Yolo_And_Cnn_Models_A_Review
[10] F. Masykur, A. Kusworo, Dan O. D. Nurhayati, “Measuring Agricultural Area Using Yolo Object Detection And Aruco Markers - Proquest,” International Information And Engineering Technology Association (Iieta)), Vol. 29, No. 1, Hlm. 95–106, Feb 2024, Diakses: 20 Juli 2025. [Daring]. Tersedia Pada: Https://Www. Proquest.Com/Openview/Eade87a0fba100e77c01a55e2387497a/1?Pq-Origsite=Gscholar &Cbl=2069459
[11] A.-R. A. Gamani, I. Arhin, Dan A. K. Asamoah, “Performance Evaluation Of Yolov8 Model Configurations, For Instance Segmentation Of Strawberry Fruit Development Stages In An Open Field Environment,” Agu 2024, Diakses: 20 Juli 2025. [Daring]. Tersedia Pada: Http://Arxiv.Org/Abs/2408.05661
[12] A. F. Cobantoro, F. Masykur, Dan M. R. Rosyadi, “Implementation Of Bot Telegram As Broadcasting Media Classification Results Of Convolutional Neural Network (Cnn) Images Of Rice Plant Leaves,” Journal Of Computer Networks, Architecture And High Performance Computing, Vol. 5, No. 1, Hlm. 1–9, Jan 2023, Doi: 10.47709/Cnahpc.V5i1.1976.
[13] R. R. Putra, M. Maimunah, Dan D. Sasongko, “Implementasi Algoritma Yolo V8 (You Only Look Once) Dalam Deteksi Penyakit Daun Durian,” Building Of Informatics, Technology And Science (Bits), Vol. 6, No. 3, Hlm. 1517−1526-1517−1526, Des 2024, Doi: 10.47065/Bits.V6i3.6136.
[14] Y. Sonata, S. B. Sulistyo, Dan K. Wijaya, “Deteksi Dini Penyakit Pada Daun Stroberi Berbasis Pengolahan Citra Early Detection Of Disease In Strawberry Leaves Based On Image Processing,” Jaber: Journal Of Agricultural And Biosystem Engineering Research, Vol. 1, No. 2, Hlm. 29–40, 2020, [Daring]. Tersedia Pada: Http://Jos.Unsoed.Ac.Id/Index.Php/Jaber/
[15] M. Shahriar Zaman Abid, B. Jahan, A. Al Mamun, M. Jakir Hossen, Dan S. Hossain Mazumder, “Bangladeshi Crops Leaf Disease Detection Using Yolov8,” Heliyon, Vol. 10, No. 18, Sep 2024, Doi: 10.1016/J.Heliyon.2024.E36694.
[16] I Made Dicky Pranata, I Wayan Agus Surya Darma, I Made Subrata Sandhiyasa, Dan I Komang Arya Ganda Wigunaa, “Strawberry Disease Detection Based On Yolov8 And K-Fold Cross-Validation,” Jurnal Ilmiah Merpati, Vol. Vol. 11, No. 3, Hlm. 199–210, Des 2023.
[17] M. Anwar, Y. Kristian, Dan E. Setyati, “Classification Of Chili Plant Diseases Equipped With Leaf And Fruit Image Segmentation Using Yolo V7,” Journal Of Information Technology And Computer Science (Intecoms), Vol. 6, No. 1, 2023.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Efi Mukaromah, Fauzan Masykur, Adi Fajaryanto Cobantoro (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.